Here is an example of permutations..
1.    Compute:  5 P 5         5 · 4 · 3 · 2 · 1  =  120 2.    Compute:   6 P 2       6 · 5  =  30                or      
                                    multiply by two factors
  multiply by two factors
                                   of the factorial, starting with 6 3.    Find the number of ways to arrange 5 objects that are chosen from a set of 7 different objects.
        7 P 5 =   7·6·5·4·3  =  2520      or      
       4.  What is the total number of possible 5-letter arrangements of the letters  w, h, i, t, e,  if each letter is used only once in each arrangement?  
          5 P5   =   5·4·3·2·1   =   120     or       or    simply  5!
     or    simply  5!
         5.   How many different 3-digit numerals can be made from the digits  4, 5, 6, 7, 8   if a digit can appear just once in a numeral?
        5 P3  =   5·4·3  =  60            or        
         
 
If you want to learn more, about Permutations. Just click the link down here.. If you can't click this link, just copy & paste it.
http://www.youtube.com/watch?v=IGNO5ucy6eY 
 
| 
 | 
| 
If you want to learn more, about Permutations. Just click the link down here.. If you can't click this link, just copy & paste it. 
http://www.youtube.com/watch?v=IGNO5ucy6eY  | 
 
No comments:
Post a Comment